NEW MODELS OF ELECTROWEAK SYMMETRY BREAKING

David Rainwater University of Rochester

DPF 2004 Aug. 27, 2004

What is EW Symmetry Breaking?

We observe from experiment that quarks and leptons obey the gauge symmetries:

 $SU(3)_c$ - QCD "strong force" (quarks only) binds quarks into protons and neutrons $U(1)_{em} \rightarrow \text{electromagnetism}$ (charged only) forms atomic bound states, etc.

and an approximate $SU(2)_L$ symmetry:

- \rightarrow observe massive W, Z; short-range force
- \rightarrow Z has some right-handed coupling

Problem 1: $M_{W,Z}$ wreck gauge invariance!

Theory needs something else...

Problem 2: $WW \rightarrow WW$ unitarity violation

 $\mathcal{A} \propto G_F E_{CM}^2$ - unitarity violation (at LHC!)

What does the SM say about this?

Postulate new particle, must be scalar (S=0)

▶ use to break $SU(2)_L \otimes U(1)_Y \rightarrow U(1)_{em}$ simple potential:

$$V(\Phi) = \mu^2 \Phi^{\dagger} \Phi + \lambda (\Phi^{\dagger} \Phi)^2$$

 $\mu^2 \to <0$ breaks $SU(2)_L$ spontaneously, generates $M_{W,Z}$, leaves photon massless; and add'tl diagrams

cancel $G_F E_{CM}^2$ terms IFF coupling = gM_W and $M_h \lesssim 1$ TeV (otherwise M_h arbitrary)

- ► Even Yukawa and self-couplings determined by unitarity!
- This is the MINIMAL theory of EWSB

But note: never seen a fundamental scalar

Theoretical problem #1: M_h stability

Quantum corrections drive M_h to M_{Pl}

$$m^{2}(p^{2}) = m_{0}^{2} + \frac{1}{J=1} + \frac{1}{J=0} + \frac{1}{J=0}$$

$$\delta M_h^2 \propto G_F \left(2M_W^2 + M_Z^2 + M_h^2 - 4m_t^2 \right) \Lambda^2$$

 Λ is new physics scale $\rightarrow M_{Pl}$? M_{GUT} ? M_{DM} ?

- 1. SM can't explain stable, EW-scale M_h \rightarrow Veltman condition? M_h tuned so $\delta M_h^2 = 0$:
 hard to believe; doesn't work for if new physics
- 2. expect new physics! (dark matter, flavor, v_R , ...) \rightarrow destabilizes M_h even worse!

<u>Theoretical</u> problem #2: flavor (Yukawas)

Theoretical problem #3: v oscillations

Theoretical problem #4: dark matter

Theoretical problem #5: CP violation

Theoretical problem #6: gauge unification

Possible old solutions:

- supersymmetry (SUSY)
- strong dynamics(TC/ETC/WTC, TC2, ...)

Possible new solutions:

- · Fat Higgs
- · Little Higgs
- · no Higgs

OLD SOLUTION #1: SUSY

· spartners cancel quadratic divergences:

$$\delta M_h^2 \propto \Lambda^2 \longrightarrow \delta M_h^2 \propto \ln(\Lambda)$$

- · radiative EWSB (Y_t evol. drives $\mu^2 < 0$)
- · DM, gauge coup unif'n, add'tl CP viol.
- minimal 120 parameters! ("MSSM")
- · no flavor, very broken, fine-tuned

[Strumia '04]

New approaches in SUSY

Problem? exp. limit on M_h getting large

Examine M_h dependence in MSSM:

$$M_h^2 \propto \frac{1}{4}[g^2 + g'^2] + (\text{stuff}) \cdot \log \frac{m_{\tilde{t}}^2}{m_t^2}$$

 $\rightarrow M_h$ partly driven by top sector

 $m_{\tilde{t}} \uparrow$ to avoid LEP M_h bound

 $m_{\tilde{t}} \downarrow$ to avoid fine-tuning

: tension! ("SUSY Little hierarchy")

 $\rightarrow M_h$ also driven by gauge sector

Poss. alternative soln: new gauge structure

[Batra, Delgado, Kaplan, Tait, JHEP(0402:043)2004]

e.g.
$$SU(2)_1 \times SU(2)_2 \longrightarrow SU(2)_L$$
:

$$M_h^2 \propto \frac{1}{4} [g^2 + g'^2 + ag_x^2] + \cdots \quad (a \sim \mathcal{O}(1))$$

Phenomenological predictions:

$$M_h = 120 - 350 \text{ GeV}$$

· new gauge bosons: $M_{W',Z'} \approx 2 - 5 \text{ TeV}$

OLD SOLUTION #2: STRONG DYNAMICS

⇒ no scalars, no stabilization problem!

"Extended Technicolor"; inspired by QCD:

new force is large @ $\Lambda \sim 4\pi v \sim \mathcal{O}$ (TeV)

techniquarks condense as $g_{TC} \rightarrow 4\pi$:

$$M_{W,Z} \propto \Lambda_{TC} \sim \langle \bar{T}_L T_R \rangle^{1/3}$$

Problems:

- 1. needs multiple scales
- 2. can't (easily) accommodate large m_t
- 3. many unseen heavy Goldstone bosons
- 4. easy to violate precision EW data
- 5. generally predicts FCNCs
- 6. difficult to calculate precisely

New idea for strong dynamics

conflict:
$$m_f \sim \frac{\Lambda_{TC}^3}{\Lambda_{ETC}^2}$$
 with $\Lambda_{TC} = 4\pi v$

but FCNC
$$\propto \frac{1}{\Lambda_{ETC}^2}$$
, need $\Lambda_{ETC} \gg \Lambda_{TC}$

Trick: allow larger Λ_{ETC} by slowing running of g_{ETC} ("conformal behavior")

Obtained with larger N_{Tf} ; yields larger ΔS – oops!

New strategy: T-fermions in higher representations - "counts" more in g_{ETC} running, $N_{Tf} \downarrow \therefore \triangle S \downarrow$ [Hong, Hsu, Sannino, PLB(597)2004]

Estimate: $M_h = 170\text{-}500 \text{ GeV}, \Lambda_{TC} \sim 250 \text{ GeV}$

NEW SOLUTION #1: FAT HIGGS

[Harnik, Kribs, Larson, Murayama, PRD(70)015002]

Goal: solve SUSY little hierarchy without fine-tuning

Try: SUSY + composite Higgs; strong EWSB

Ingredients:

- · extra gauge symmetry $SU(2)_H$
- · extra global symmetries $SU(2)_R$, $SU(2)_g$, $U(1)_R$
- · 6 top quark doublets, $T^1, T^2, T^3, T^4, T^5, T^6$, careful symmetry assignments, mass m for 1 pair
- ► T^i condensation to meson states M_{ij} at scale $\Lambda_H > M_{SUSY}$ yields an NMSSM-like superpotential:

$$W = \lambda M_{56} \left(\begin{pmatrix} M_{14} \\ M_{24} \end{pmatrix} \begin{pmatrix} M_{13} \\ M_{23} \end{pmatrix} - v_0^2 \right)$$

$$W = \lambda S \left(H_d H_u - v_0^2 \right)$$

$$v_0^2 \sim \frac{m\Lambda_H}{(4\pi)^2}$$

Fat Higgs: noteworthy features

$\rightarrow SU(2)_H$ forces <u>weak</u> λ below scale Λ_H

- \rightarrow no fine-tuning
- → no domain wall problem like in NMSSM
- → gauge coupling unification works
- \rightarrow no bound on M_h (typically heavy)
- → MSSM spectrum relatively light

Drawbacks

- → contains awful lot of new model content
- → no obvious GUT scheme

Fat Higgs: scalar spectrum

3 models presented:

► <u>NOT</u> MSSM/NMSSM-like! $(h^0 \text{ heavy}, N^0 \text{ very heavy},$ $H^0/A^0/H^{\pm} \text{ not degenerate})$

Model II Model III

Note: $\triangle T \sim 0.1$ -0.5 expected in Model III

▶ no problem with precision EW data

New solution #2: Little Higgs

Motivation:

precision data constrains new flavor physics to 5-10 TeV: Little Hierarchy

- → solve this <u>without</u> SUSY
- ► 3-scale symmetry breaking to yield SM

- ► 3 essential ingredients:
 - 1. extended gauge sector, ≥ 2 new gauge coups
 - 2. enlarged global symmetry
 - 3. extended top sector: vector-like $t'_{L,R}$ (but this is a bit cooked up)

Note: full theory probably strong dynamics!

How Little Higgs works

"Littlest Higgs" as example:

[Arkani-Hamed, Cohen, Katz, Nelson, JHEP(0207)034]

- Global sym. broken spontan'ly via $\langle \Sigma \rangle$: $\Lambda \sim 4\pi f$ $SU(5) \rightarrow SO(5) \Rightarrow 14$ Goldstone bosons and at the same time:
- Gauge sym. broken spontan'ly via $\langle \Sigma \rangle$: $f \sim 4\pi v$ $[SU(2) \otimes U(1)]_1 \otimes [SU(2) \otimes U(1)]_2 \rightarrow SU(2)_L \otimes U(1)_Y$ 4 GB's eaten for W'^{\pm}, Z', A' $W^{\pm,0}, B^0$ still massless
- EWSB happens: $SU(2)_L \otimes U(1)_Y \to U(1)_{em}$, $v \sim 250$ GeV \to yields complex heavy triplet ϕ , Higgs doublet h $(m_{\phi} > f \text{ expected})$

 M_h stabilized up to scale Λ by 1-loop quadratic divergence cancellations due to carefully-arranged gauge structure and hand-massaged top sector

Little Higgs phenomenology

Model variations: diff. groups (couple dozen):

· scalars: 1-2 doublets, 0-1 triplets, 0-3 singlets

· vectors: W', Z', A'; can have even <u>more</u> Z's

Obvious and mostly easy exp. task: observe $t', W'^{\pm}, Z', A', \phi, ...$

 \rightarrow count states, measure spectrum

Obvious but hard exp. task - prec. coupl's: $t\bar{t}h$, $t\bar{t}Z$, Z'Zh, W'Wh, A'Zh, ...

▶ some models' coups are free parameters!

Task that needs the ILC: EW prec. meas.

Little Higgs t',Z' cross sections at LHC

[Han, Logan, McElrath, Wang, PRD(67)095004]

Little Higgs and EW precision constraints

Corrections typically $\sim \frac{v^2}{f^2}$

ALL L.H. models reduce to prec. EW tests!

- 2 cases: [Kilian and Reuter, PRD(70)015004]
- 1. no extra gauged U(1)'s: S, T plus 4f contact interactions
- 2. extra gauged U(1)'s: $Zf\bar{f}$ coups shifted so adapt EW fits

"Littlest Higgs" already limited:

$$\rightarrow f \gtrsim 4 \text{ TeV}, m_{t'} \gtrsim 14 \text{ TeV}$$

▶ implies large fine-tuning!

New solution #3: No Higgs ("Higgsless" models)

Goal: NO fundamental or composite scalar

Simple observation: in finite-sized "flat space" extra dim.'s, MIXED boundary conditions (BC) can give mass

zero-mode unchanged: $m_0 = 0$

zero-mode lifted: $m_n = (n + \frac{1}{2})/R$

But this is not enough!

brane-localized Higgs still necessary, massive custodial SU(2) violation $(T \neq 0 \text{ by lots})$

Way out: [Csáki, Grojean, Pilo, Terning, PRL(92)101802]

AdS (warped) space preserves custodial SU(2), no Higgs on brane required

- ▶ presence of TeV brane breaks EW symm.
- ► model is dual to walking TC

Do Higgsless models preserve $WW \rightarrow WW$ unitarity?

➤ Yes! preserved by gauge boson KK tower (cancellation between all tower modes)

- → exact relations between gauge couplings of various tower states; from 5-d gauge theory
- \rightarrow however, tree unitarity breaks down at 5-d cutoff scale due to finite terms (E^0)
- \rightarrow expect first Z' around few hundred GeV, second around 1 TeV

Do viable Higgsless models agree with precision EW data?

Default theory predicts:

$$S \approx 1.15$$
 $S_{\text{data}} = -0.03 \pm 0.11$ $T = 0$ $T_{\text{data}} = -0.02 \pm 0.13$ $U = 0$ $U_{\text{data}} = +0.24 \pm 0.13$

3 possible modifications to fix *S*. Implications:

- 1. S reduced, but $M_{Z'}$ too large to fix unitarity, theory becomes strong, calc. unreliable
- 2. *S* reduced, but tachyon appears
- 3. $S \approx 0$, $M_{Z'} \approx 300$ GeV, unknown if ruled out

Other issue: fermion sector not understood

Summary of new EWSB models

- nearly all models have SM-like Higgs LHC *can* see this and measure it
- new model SM-like Higgs often heavy
- most interesting physics is NOT Higgs
- Higgsless: WW excitation curve crucial
- all paths lead to strong dynamics