A New Search for a Neutron Electric Dipole Moment

B. Plaster California Institute of Technology *for* The EDM Collaboration

Division of Particles and Fields Meeting University of California, Riverside August 28, 2004

Outline

- Introduction and Motivation
- ✓ Past Neutron EDM Searches
- Proposed Experiment
- ✓ Progress and Schedule

Introduction

 Hamiltonian for neutron ground state in external electric E and magnetic B fields

$$H = -2(\mu_n \cdot B + d_n \cdot E)$$

- P (E -> -E) and T (B -> -B; J -> -J) operations not symmetries of the Hamiltonian
- T violation -> CP violation by CPT theorem
- CP violation seen in neutral kaon and B-meson systems -> in agreement with SM
- Searches for CP violation in light quark and lepton systems yielded null results

Why Search for $d_n \neq 0$?

- CP violation in the Standard Model (SM)
 - complex phase δ in CKM matrix
 - θ-term in QCD Lagrangian

 SM CKM predictions for EDMs are suppressed

[see Erler and Ramsey-Musolf, hep-ph/0404291]

- Discovery of EDM with value above SM CKM prediction?
 - CP violation in QCD sector
 - new physics beyond the SM
 - additional source of CP violation needed to explain BAU
- Proposed extensions to the SM yield EDMs above SM CKM prediction
 - e.g., supersymmetry, multi-Higgs models, left-right symmetry
 - e.g., n EDM ~ $(10^{-28} 10^{-26})$ e-cm

Several orders of magnitude increase in neutron sensitivity has potential for major discovery !

Past Neutron EDM Searches

Best limit to date from ILL reactor (1999): $d_n \le 6.3 \times 10^{-26} \text{ e-cm}$ (1999)

 Incorporated for the first time a "co-magnetometer" of polarized ¹⁹⁹Hg atoms -> reduced systematic error associated with B field

Proposed experiment has potential for 2 orders-of-magnitude improvement and greatest reach of all next-generation EDM experiments

Proposed Experiment

Overall strategy

- Locally produce UCN inside a closed neutron trap via the downscattering of cold neutrons in superfluid ⁴He at 300 mK (recoil phonon)
- Introduce dilute (~10⁻¹⁰) admixture of polarized ³He atoms as co-magnetometer
 - ³He EDM negligibly small due to Schiff shielding
- Extract d_n from comparison of ³He and neutron precession frequency when E, B parallel and anti-parallel

Superfluid ⁴He dispersion curve

Single recoil phonon: $\mathbf{Q} = \mathbf{k}_i - \mathbf{k}_f$ $\hbar^2 \mathbf{k}_i^2 / 2\mathbf{m} = \hbar^2 \mathbf{k}_f^2 / 2\mathbf{m} + \mathbf{E}(|\mathbf{Q}|)$

Experimental Schematic

Neutron Precession Frequency

- Measurement of the UCN precession frequency
 - UCN and ³He spins will precess at different frequencies: μ_{3He} / μ_n ~ 1.11
 - <u>difference between the precession frequencies</u> will be monitored via the spin dependence of the nuclear absorption cross section for the reaction

The EDM Collaboration

P. Barnes¹¹, D. Beck⁷, J. Boissevain¹¹, D. Budker¹, J. Butterworth⁹, V. Cianciolo¹⁴,
M. Cooper¹¹, D. Dale⁸, J. Doyle⁵, D. Dutta³, M. Espy¹¹, B. Filippone², G. Frossati¹⁰,
J. Fuzi⁶, H. Gao³, T. Gentile¹², R. Golub⁴, C. Gould¹³, M. Hayden¹⁵, D. Hertzog⁷,
J. Hsiao², P. Huffman¹³, T. Ito¹⁴, P. Kammel⁷, K. Korobkina⁴, W. Korsch⁸,
S. Lamoreaux¹¹, C.-Y. Liu¹¹, J. Long¹¹, A. Matlachov¹¹, R. McKeown², F. Mezei⁴,
R. Mischke¹¹, J.-C. Peng⁷, S. Pentilla¹¹, B. Plaster², A. Sharp⁷, W. Sondheim¹¹,
A. Sushkov¹, J. Torgerson¹¹, S. Wilburn¹¹, S. Williamson⁷, L. Yang⁵, Q. Ye³,

¹ University of California, Berkeley, CA
 ² California Institute of Technology, Pasadena, CA
 ³ Duke University, Durham, NC
 ⁴ Hahn-Meitner Institut, Berlin, Germany
 ⁵ Harvard University, Cambridge, MA
 ⁶ Hungarian Academy of Sciences, Budapest, Hungary
 ⁷ University of Illinois, Urbana-Champaign, IL
 ⁸ University of Kentucky, Lexington, KY
 ⁹ Air Liquide - Advanced Technology Division, Sassenage, France
 ¹⁰ University of Leiden, Leiden, The Netherlands
 ¹¹ Los Alamos National Laboratory, Los Alamos, NM
 ¹² National Institute of Standards and Technology, Gaithersburg, MD
 ¹³ North Carolina State University, Raleigh, NC
 ¹⁴ Oak Ridge National Laboratory, Oak Ridge, TN
 ¹⁵ Simon-Fraser University, Burnaby, BC, Canada

- Experiment is currently in the R&D phase; technical progress thus far includes
 - Full-scale mockup of the high-voltage multiplier has been constructed and operated successfully at 4K (superfluid tests soon)
 - Work on magnetic fields and magnetic shielding has begun (Caltech)
 - prototype cosθ coil; cryogenic tests of ferromagnetic magnetic shielding
 - Polarized ³He relaxation times (T_1) measured at 4K and 2.5K
 - longer relaxation times observed at 2.5K (~8.5 hr) than at 4K (~3.9 hr)
 - Particle identification studies underway at a reactor
 - scintillation light from recoiling tritons/protons and β-decay electrons
 - Plans underway to study neutron storage time
 - couple to already-existing UCN beamline at LANL

Schedule and Projected Result

Anticipated schedule

- R&D phase to continue through FY2005; full proposal in progress
- Collaboration eager to start construction phase FY2006
- Experiment will be mounted at the Spallation Neutron Source at the Oak Ridge National Laboratory (~2010)

Sensitivity at this level:

- discover a non-zero value for d_n
- severely constrain proposed SM extensions

If non-zero value is discovered, results from complementary experiments needed:

- CP violation in QCD sector
- new physics beyond the SM

- Search for neutron EDM is of fundamental importance
 - several orders of magnitude increase in sensitivity has the potential to either discover non-zero value or severely constrain proposed extensions to Standard Model

 New experiment employing novel technique of UCN production in superfluid ⁴He with ³He as co-magnetometer has potential to increase sensitivity by two orders of magnitude to ~10⁻²⁸ e-cm

- Collaboration has made significant R&D progress on a number of technical issues
 - ready to enter construction phase in FY2006

Other Neutron EDM Searches

From Subcommittee on Fundamental Physics with Neutrons Report to NSAC

Facility	Limit (e-cm)	Date	Technique	Status
ILL (ILL-99)	7.5 × 10 ⁻²⁶	1999	20-ℓ cel1 Hg magnetometer	Latest publication
ILL	$3.4 imes 10^{-26}$	2003	20-ℓ cel1 Hg magnetometer	(ILL-99) Now running
ILL	$8-20 \times 10^{-27}$	2004-6	20-ℓ cells Hg magnetometer	(ILL-99) Possible continuation
PSI	2×10^{-27}	2006-8	Eight 3-ℓ cells neutron/Cs magnetometer	New proposal under review
ILL	$1-20 \times 10^{-28}$	2006-9	Superfluid He trap, neutron magnetometer	New proposal under review
LANSCE (1 st stage)	$6-27 \times 10^{-28}$	2008-10	Superfluid He trap, ³ He magnetometer	Pre-proposal stage
SNS (2 nd stage)	$3-12 \times 10^{-29}$	2010-12	Superfluid He trap, ³ He magnetometer	Pre-proposal stage