Higgs Boson Production with Bottom Quarks at Hadron Colliders

Chris Jackson (Florida State University)
DPF2004, August 2004

with S. Dawson (BNL), L. Reina (FSU), and D. Wackeroth (SUNY-Buffalo)
SM Higgs Production at Hadron Colliders

(From M. Carena, H. Haber, Prog.Part.Nucl.Phys.50(2003))

- In SM, Higgs production dominated by $gg \rightarrow h$
- $b\bar{b}h$ suppressed due to smallness of $g_{hbb} \sim \frac{m_b}{v}$
MSSM Higgs Production at Hadron Colliders

(from M. Carena, H. Haber, Prog.Part.Nucl.Phys.50(2003))

- Yukawa coupling enhanced: \(g^{MSSM}_{bb(h^0,H^0)} = \frac{(-\sin \alpha, \cos \alpha)}{\cos \beta} g_{bbh} \)

- \(\sigma_{(h^0,H^0)b\bar{b}} \) comparable or larger than \(\sigma_{gg \rightarrow (h^0,H^0)} \)
Four Flavor Number Scheme (4FNS)

- Tagging b jets:
 - inclusive \equiv no cuts on p_T of b's
 - semi-inclusive \equiv one high-p_T b
 - exclusive \equiv two high-p_T b's

- (Semi-)Inclusive c.s. develops potentially large log’s ($\Lambda_b \equiv \log\left(\frac{Q^2}{m_b^2}\right)$) from collinear splitting ($g \to b\bar{b}$)

- Perturbative expansion: $\alpha_s \to \alpha_s \Lambda_b$
Exclusive $b\bar{b}h$ Production

- Two independent calculations of NLO QCD corrections:

- Setup:
 - Require two high-p_T b jets in final state: $p_T^{b,\bar{b}} > 20$ GeV and $|\eta_{b,\bar{b}}| < 2(2.5)$ Tevatron (LHC)
 - Radiated g and b/\bar{b} distinct only if $\Delta R > 0.4$

- Cuts reduce signal and background

- Factorization/renormalization scale dependence reduced

- Given large sensitivity of $m_b(\mu_r)$ on μ_r, also investigated renormalization scheme dependence for m_b
 - OS vs. \overline{MS}: at $\mathcal{O}(\alpha_s^3)$ both are perturbatively consistent
 - Difference being at higher orders \rightarrow theoretical uncertainty $\approx 15 - 20\%$
Results for Exclusive $\bar{b}b\bar{b}h$ Production

(from S. Dawson, C.J., L. Reina and D. Wackeroth, PRD 69, 074027 (2004))
M_H, $\tan \beta$ Dependence for Exclusive $b\bar{b}(h^0, H^0)$

(from S. Dawson, C.J., L. Reina, D. Wackeroth, PRD 69,074027 (2004))

- Large $\tan \beta \rightarrow$ top loop suppressed
- Good approximation: $\sigma_{NLO}(MSSM) \sim \sigma_{NLO}(SM)(\frac{g_{bbh}^{MSSM}}{g_{bbh}^{SM}})^2$
Five Flavor Number Scheme (5FNS)

- Physical process $gg \rightarrow b\bar{b}h$ contains large logs from (collinear) splitting $g \rightarrow b\bar{b}$

- Introduce (theoretically defined) b-quark PDF:

\[
\tilde{b}(x, \mu) = \frac{\alpha_s(\mu)}{2\pi} \log\left(\frac{\mu^2}{m_b^2}\right) \int_x^1 \frac{dy}{y} P_{qg}(\frac{x}{y}) g(y, \mu)
\]

- Leading Processes in 5FNS:
 - **Inclusive** $\equiv b\bar{b} \rightarrow h$ (Known at NNLO (see Harlander & Kilgore PRD 68 (2003) 013001))
 - **Semi-inclusive** $\equiv gb \rightarrow bh$ (Known at NLO (see Campbell et.al PRD 67 (2003) 095002))

- Important to study validity/compatibility of 4FNS/5FNS
Results for Inclusive \((\bar{b}b)h\) Production

(from J. Campbell et. al. (Higgs Working Group), Les Houches workshop on Physics at TeV Colliders (2004), hep-ph/0405302)
Results for Semi-inclusive $b(\bar{b})h$ Production

\[\sigma(pp \to b\bar{b}h + X) \text{ [fb]} \]
\[\sqrt{s} = 1.96 \text{ TeV} \]
\[M_h = 120 \text{ GeV} \]
\[\mu = (2m_b + M_h)/4 \]
\[p_T^{b\bar{b}} > 20 \text{ GeV} \]
\[|\eta_b\bar{b}| < 2 \]
\[gb/b \to b\bar{b}h \]
\[gg \to bb + h \]

$\sigma_{LO,NLO}$ vs μ/μ_0 for $\sqrt{s}=1.96$ TeV and $M_h=120$ GeV.

$\sigma_{LO,NLO}$ vs M_h for $\sqrt{s}=14$ TeV and $M_h=120$ GeV.

$\sigma_{LO,NLO}$ vs μ/μ_0 for $\sqrt{s}=14$ TeV and $M_h=120$ GeV.
Not the End of the Story

- Diagrams containing loops of quarks neglected in 5FNS

\[
\begin{align*}
\text{b} & \quad \text{g} \quad \text{h} \\
\text{t} & \quad \text{h} \\
\text{b} & \quad \text{b}
\end{align*}
\]

- \(bg \rightarrow bh \) @ NLO performed in the \(m_b = 0 \) approximation (except in \(g_{hbb} \)):
 - Top quark loop neglected since \(g_{(h^0,H^0)tt} \approx \frac{1}{\tan \beta} \)
 - Bottom quark loop neglected since amplitude is \(\propto m_b \)
 - In SM, this diagram (w/ top quarks) makes a contribution \(\sim \mathcal{O}(g_{Hbb}^2) \rightarrow \) could be numerically important!

- To compare 4FNS and 5FNS for semi-inclusive process, we utilized MCFM (Campbell and Ellis, webpage:mcfm.fnal.gov) altered to contain the top loop contribution.

- Including top loop lowers \(\sigma_{gb \rightarrow bh} \) by 15%(10%) at the Tevatron (LHC)
Results for Semi-inclusive $b(\bar{b})h$ Production ...again

For $\tan \beta = 40$, top loop contribution $\leq 0.08\%$ in $gb \rightarrow bh$
Summary

- $b\bar{b}h$ can play important role in Higgs production at Hadron Colliders for models w/ enhanced b quark Yukawa couplings (e.g. 2HDM, MSSM)

- QCD corrections can have large effects on distributions and drastically reduce theoretical uncertainties

- **Exclusive Production**: agreement between two independent NLO QCD calculations

- **Inclusive Production**: “good” agreement between 4FNS and 5FNS calculations (top loop diagrams?)

- **Semi-inclusive Production**:
 - Academically: SM results now agree (spectacularly!) between 4FNS and 5FNS after the inclusion of the top loop diagrams in $gb \to bh$
 - Numerically: MSSM results agree between 4FNS and 5FNS
Further Reading

- **Exclusive Production:**

- **Inclusive and Semi-inclusive Production:**
 - Harlander and Kilgore (PRD 68 013001(2003))
 - J. Campbell et. al. (PRD 67 095002 (2003))

- **Comparison between 4FNS/5FNS:**
 - LH HWG (hep-ph/0405302)
p_T Distributions for Semi-inclusive Production

“Divergences” in p_T Distributions

- Similar effects seen in Drell-Yan Q_\perp distributions (for review, see S. Catani and B.R. Webber, hep-ph/9710333)

- At LO, Higgs recoils against b jet:
 - p_T cut on b jet \implies cut on p_T^h
 - $(\frac{d\sigma}{dp_T^h})_{LO} \rightarrow$ “non-smooth” function

- In the region of the “cut” on p_T^h, the NLO c.s. is the convolution of the LO c.s. with a “soft gluon probability”
 - ”Soft gluon probability” \rightarrow “plus” distribution

 \[
 \text{“non-smooth” } f(z) = \int_0^1 dz f(z)[g(z)]_+ = \text{“logarithmic divergences”}
 \]

- Improvement through resummation techniques (see, e.g. N. Kidonakis, hep-ph/9902484)