Searches For New Physics

Gustaaaf Brooijmans

Meeting of the Division of Particles and Fields of the American Physical Society
University of California, Riverside
2004
I apologize

Too Much To Talk About

• I'd like to cover
 – Direct searches, indirect searches and future prospects

• Sounds simple enough, but looking at the parallel session agendas...
 – 31 talks in “Direct Searches”
 – 10 talks in “Muon g-2, LFV, EDMs”
 – 9 talks in “LHC-LC Comparison”
 – 43 talks in non-top “Heavy Flavor Physics”
The Standard Model in Words

- Matter is built of spin ½ particles that interact by exchanging 3 different kinds of spin 1 particles corresponding to 3 different (gauge) interactions.
- There are 3 generations of matter particles.
- The 4 different matter particles in each generation carry different combinations of (quantified) charges characterizing their couplings to the interaction bosons.
- The matter fermions and the weak bosons have “mass.”
- Gravitation is presumably mediated by spin 2 gravitons.
- (There appear to be 3 macroscopic space dimensions.)
Many Fundamental Questions

- What exactly is (weak iso)spin? Or color? Or electric charge? Why are they quantified?
- Are there only 3 generations? If so, why?
- Why is there no matter that doesn't interact weakly?
- What is mass?
- How does all of this reconcile with gravitation? How many space-time dimensions are there really?
- Is “our universe” the unique solution?
The One We Think We May Have a Handle On: Mass

- The addition of a naïve M^2WW mass term to generate the gauge boson masses (luckily) not only breaks gauge invariance, but also destroys renormalizability of the Standard Model
 - At high energy ($\sqrt{s} \sim 1.7$ TeV), $W_L W_L$ scattering violates unitarity

- An elegant solution is provided by the Higgs mechanism: the “Standard Model Higgs” generates both boson and fermion masses, and “restores” unitarity (if $m_H < \sim 1$ TeV).
Standard Model Higgs Mass

- Yellow shaded: excluded by LEP2 direct search ($m_H > 114.4$ GeV @ 95% CL).
- Curve: m_H inferred from precision measurements, very sensitive to m_{top}, m_W (best fit value shifted up ~18 GeV with 4 GeV increase in m_{top} – DØ, Nature 429: 638, 2004)
Prospects for SM Higgs Discovery

- Tevatron Higgs sensitivity study redone in 2003 with better knowledge of detector performance, 1999 results confirmed

- Detection through production of WH or ZH, leptonic W/Z decay and H decay to $b\bar{b}$

8 fb$^{-1}$ by early '08
SM Higgs at the LHC

- If there is a Higgs with “Standard Model properties”, discovery at LHC is “certain”

- Measurement of properties:

Duehrssen et al., hep-ph/0407190

Gustaf Brooijmans

Searches for New Physics

Meeting of the DPF, UCR2004
The LHC is Real!

Real Magnets in Tunnel!

Atlas Cavern

Gustaaaf Brooijmans
Searches for New Physics
Meeting of the DPF, UCR2004
Studying The Higgs at a LC

- **Couplings:**
 - b: <1 - 10% for $m_H = 115-200$ GeV
 - c, tau: 12% for $m_H < 160$ GeV
 - t: through $t\bar{t}H$ production (10-20%, as LHC) for $m_H < 350$ GeV
 - W: 2 – 0.5% for $m_H = 115-200$ GeV
 - photon: 5 – 25% for $m_H = 115-200$ GeV
 - Z: 1% at $m_H = 200$ GeV

- **Spin:**
 - (Angular distributions in) decays
 - Production cross-section

Dawson & Oreglia
hep-ph/0403015

Dova, Garcia-Abia and Lohmann
hep-ph/0302113
Higgs Drawbacks

- Higgs by itself is very unsatisfactory:
 - Why are the Yukawa couplings what they are?
 - What is the link to gravity?
 - Why exactly is $(\mu)^2$ negative?

- Higgs mechanism introduces new problems (or benefits):
 - Higgs mass is “naturally” the next energy scale, so if we have a “Standard Model Higgs”, that's about 200 GeV

- Two approaches:
 - Fix by addition (SUSY, ... at ~ 200 GeV – 1 TeV)
 - Fix by subtraction (forget about Higgs)
Low Scale Supersymmetry

- For each boson/fermion, there is an associated fermion/boson
 - All quantum numbers (except spin), and all couplings are the same, masses appear to be different
 - Then, what is spin?
- Fermionic and bosonic loop corrections to the Higgs mass cancel each other, so Higgs mass is \(\sim \)SUSY mass scale
- Requires 2 Higgs doublets, get 5 physical Higgses
Minimal Supersymmetric SM

- Minimally constrained means 105 parameters (superpartner masses, mixing angles,...)

These analyses assume LSP is the lightest neutralino, process BR

- LEP, D0 limits on stop and sneutrino mass assuming stop $\rightarrow b\ l$ sneutrino
- CDF limits on gluino and sbottom mass assuming gluino \rightarrow sbottom bottom

![Graph showing LEP, D0 limits on stop and sneutrino mass](image1)
![Graph showing CDF limits on gluino and sbottom mass](image2)
SUSY Breaking

- Sparticle masses are different from particle masses, so SUSY must be broken
- Various breaking models, with different phenomenological signatures

Explain Electroweak Symmetry Breaking! (Mass!)

Barger et al., hep-ph/0003154
SUpGrAyvity

- SUSY breaking is transmitted from a hidden sector through gravity – this reduces the number of free parameters to 5 (in mSUGRA)

LEP combined lower bound on neutralino mass in SUGRA-like model

(LEPSUSYWG/04-07.1)

<table>
<thead>
<tr>
<th>m(χ^0_1) (GeV/c^2)</th>
<th>σ × BR(3l) [pb]</th>
</tr>
</thead>
<tbody>
<tr>
<td>≤ 1 TeV/c^2</td>
<td>2.2</td>
</tr>
<tr>
<td>m_{top} = 178 GeV/c^2</td>
<td>2.0</td>
</tr>
<tr>
<td>m_{h} = 175 GeV/c^2</td>
<td>1.8</td>
</tr>
</tbody>
</table>

D0 bound on associated chargino-neutralino production in mSUGRA

(Trileptons: “Golden” channel at Tevatron)

147-249 pb

Gustaf Brooijmans Searches for New Physics Meeting of the DPF, UCR2004
Gauge Mediated Susy Breaking

- SUSY breaking messengers participate in SM gauge interactions, LSP is a very light gravitino so phenomenology is driven by NLSP

LEP combined slepton and bino NLSP

Example: N=2, medium M, $\mu > 0$, short lifetime

D0 bino NLSP

Run II Preliminary

$N_L = 1$

$M_L = 2 \Lambda$

$\tan \beta = 5$

$\mu > 0$

185 pb$^{-1}$

"The" CDF Run 1 Event
Always at least one of 5 physical Higgses observable

- At large m_A, distinguishing SUSY from SM based on Higgs alone is difficult, but in that region, other SUSY signatures are usually present
SUSY at the LHC - Sparticles

- Plethora of signatures
 - Jets + missing ET
 - Trileptons
 - ...

- Detect cascade decays of heavier particles, with LSP escaping -> use endpoints of kinematic distributions to determine masses

Atlas Physics TDR, 10 fb⁻¹
SUSY Measurements

• If there is low-scale SUSY, it will be discovered at the LHC, then move to measurement phase
 – Verify it is SUSY (measure couplings and quantum numbers)
 – Measure pattern of sparticle masses, deduce the pattern of SUSY breaking

• How much of this will be accessible at the LHC and, later, LC depends on the sparticle masses themselves
LHC vs LC

- LC obviously gives better precision (ingoing longitudinal momentum is known)

<table>
<thead>
<tr>
<th>LHC: llq mass (squark decay)</th>
<th>LC: lepton spectrum (slepton decay)</th>
</tr>
</thead>
</table>

Allanach et al., hep-ph/0403133

At LC, can also perform threshold scans
Comparison For Snowmass Pt 1a

- LC clearly improves mass determination
- But SPS point 1a is very good for the LC (masses are \(\sim \)low):

\[
\begin{array}{|c|c|c|c|c|}
\hline
& \text{Mass, ideal} & \text{“LHC”} & \text{“LC”} & \text{“LHC+LC”} \\
\hline
\tilde{\chi}_1^{\pm} & 179.7 & - & 0.55 & 0.55 \\
\tilde{\chi}_2^0 & 382.3 & - & 3.0 & 3.0 \\
\tilde{\chi}_1^0 & 97.2 & 4.8 & 0.05 & 0.05 \\
\tilde{\chi}_2^0 & 180.7 & 4.7 & 1.2 & 0.08 \\
\tilde{\chi}_3^0 & 364.7 & - & 3.5 & 3.5 \\
\tilde{\chi}_4^0 & 381.9 & 5.1 & 3.5 & 2.23 \\
\tilde{\epsilon}_R & 143.9 & 4.8 & 0.05 & 0.05 \\
\tilde{\epsilon}_L & 207.1 & 5.0 & 0.2 & 0.2 \\
\tilde{\nu}_e & 191.3 & - & 1.2 & 1.2 \\
\tilde{\mu}_R & 143.9 & 4.8 & 0.2 & 0.2 \\
\tilde{\mu}_L & 207.1 & 5.0 & 0.5 & 0.5 \\
\tilde{\nu}_\mu & 191.3 & - & - & - \\
\tilde{\tau}_1 & 134.8 & 5.8 & 0.3 & 0.3 \\
\tilde{\tau}_2 & 210.7 & - & 1.1 & 1.1 \\
\tilde{\nu}_\tau & 190.4 & - & - & - \\
\tilde{q}_R & 547.6 & 7-12 & - & 5-11 \\
\tilde{q}_L & 570.6 & 8.7 & - & 4.9 \\
\tilde{t}_1 & 399.5 & 2.0 & - & - \\
\tilde{t}_2 & 586.3 & - & - & - \\
\tilde{b}_1 & 515.1 & 7.5 & - & 5.7 \\
\tilde{b}_2 & 547.1 & 7.9 & - & 6.2 \\
\tilde{g} & 604.0 & 8.0 & - & 6.5 \\
\hline
\end{array}
\]

\(\text{in GeV} \)

\[H^\pm, A^0, H^0, \tilde{\chi}_1^0, \tilde{\chi}_2^0, \tilde{\chi}_3^0, \tilde{\tau}_2^0, \tilde{\nu}_\tau, \tilde{\nu}_e, \tilde{\epsilon}_L, \tilde{\epsilon}_R, \tilde{\nu}_\tau, \tilde{\nu}_e \]

Allanach et al., hep-ph/0403133

Gustaf Brooijmans
Searches for New Physics
Meeting of the DPF, UCR2004
Combined mSUGRA Reach

- Red: theoretically not accessible
- Yellow: LEP 2 excluded
- Green: preferred region from WMAP dark matter measurement
- Note area accessible to LC but not LHC

Gustaf Brooijmans
Searches for New Physics
Meeting of the DPF, UCR2004
SUSY, Rare Decays and Precision Measurements

- Rare decays are processes in which the tree-level SM process is forbidden (for example because it is a FCNC)
 - At 1 loop level often still involve a weak process
 - These often provide a relatively background-free means of probing physics at the 1 or 2 loop level
- Other processes are measured with stunning precision, and theoretical precision is just as impressive
- In many cases, these drive limits on new couplings (like R-Parity Violation in SUSY)
At the Tevatron...

- Tevatron is a copious source of B_s, search for decays to muons
 - In the SM $\text{BR} = 3.8 \times 10^{-9}$ (Buchalla & Buras, NPB400 (1993) 225)
 - Could be up to 3 orders of magnitude higher in SUSY:

```
\begin{align*}
\text{b} & \rightarrow t W^+ W^- \rightarrow \mu^+ \mu^- \\
\text{s} & \rightarrow t W^- W^- \rightarrow \mu^+ \mu^- \\
\text{b} & \rightarrow t H^+ \rightarrow \mu^+ \\
\text{s} & \rightarrow t H^- \rightarrow \mu^- \\
(\text{This one is present in all 2HDM models...})
\end{align*}
```

New Limits from D0 and CDF (240 and 171 pb$^{-1}$), combined by M. Herndon: $\text{BR} < 2.7 \times 10^{-7} @ 90\% \text{ CL}$
Or at SLAC (and KEK) ...

- BABAR searches for $B_d \rightarrow l^+l^-$ decays in
 $\sim 120 \text{ fb}^{-1}$ of on- and off-resonance:
 (BABAR, hep-ex/0408096)

 - $\text{BR}(B_d \rightarrow ee) < 6.1 \times 10^{-8}$ (SM: 1.9×10^{-15})
 - $\text{BR}(B_d \rightarrow \mu\mu) < 8.3 \times 10^{-8}$ (SM: 8.0×10^{-11})
 - $\text{BR}(B_d \rightarrow e\mu) < 18 \times 10^{-8}$ (SM: 0)

- Allows them to put limits on MSSM parameters using
 Bobeth et al., PRD 66, 074021 (2002)

 - e.g. $M_H > 138 \text{ GeV} @ 90\% \text{ CL}$ for $\tan(\beta) = 60$
Or at Brookhaven...

• New result from E949:

 – $\text{BR} (K^+ \rightarrow \pi^+ \nu \bar{\nu}) = 1.47 \pm 1.30 \times 10^{-10}$

 (E949, hep-ex/0403036)

 – Current SM estimate: $\text{BR}^{\text{SM}} = 8.18 \pm 1.22 \times 10^{-11}$

 (Deandrea et al., hep-ph/0407216)

 – SUSY contribution without R-Parity violation is maximum 50% of SM (with current bounds), but use to set limits on some RPV couplings which are the most stringent to date (same authors)
Muon g-2

• Motivation:

– Difficult, but well-understood experiment, done to a precision of 0.5 ppm (!), sensitive to 2-loop corrections – potential to see effects from heavy new particles

– Theoretical value well known (0.7 ppm!), although some variation in calculations, and always 2 results, depending on input to hadronic vacuum polarization. (In one of those, issue with uncertainties due to isospin breaking effects)
• Current situation:
 – Discrepancy is 2-3 sigma

• This discrepancy is larger than the effect of weak interactions by 30%! (de Troconiz & Yndurain hep-ph/0402285)

• Can be used to put strong constraints on new physics that contributes in other direction

Heinemeyer et al., hep-ph/0405255
Maybe There is No Low Scale SUSY

- Quite a few alternatives have been explored, most address hierarchy problem first and foremost:
 - Technicolor
 - Extra space dimensions
 - Complex group-theoretical constructions

- Others argue fine-tuning may be part of nature:
 - “Split” SUSY (Arkani-Hamed & Dimopoulos, hep-th/0405159)
Technicolor Searches

- QCD-inspired, strongly coupled theory
 - Hierarchy explained as a confinement phenomenon
 - No fundamental scalars
- Strong coupling makes it difficult to satisfy constraints from precision data, now have *topcolor-assisted walking technicolor*
- Also makes predictions difficult
Gustaf Brooijmans

Searches for New Physics

Meeting of the DPF, UCR2004
Large Extra Dimensions

• In original Arkani-Hamed, Dimopoulos & Dvali (ADD) scenario, SM particles are confined to a 3-brane, with gravity propagating in more dimensions

• Hierarchy problem solved by bringing down Planck scale (only “appears” high in 3D)

• Two main types of signatures:
 – Interference from KK graviton excitations in SM processes
 • Look at high energy/mass, and angular behavior
 – On-shell KK graviton excitation production
 • Missing energy (graviton goes back to non-SM dimensions)
• D0 search in dielectron (Drell-Yan) and diphoton events

Leads to Most Stringent Limits to Date on Fundamental Planck Scale:

\[M_S > 1.43 \text{ TeV} @ 95\% \text{ CL} \]

(GRW Convention)

LHC reach is up to 9 TeV (depending on number of dimensions)

Atlas & CMS hep-ex/0310020
Resonances

• Many of the non-SUSY models predict resonances:

 – “Warped” extra dimensions (Randall-Sundrum and variations)

 • Graviton resonances
 • Gauge boson KK excitations

 – Little Higgs and other models with extended group structures

 • Z', W' bosons with various coupling strengths

• Experimentally, one analysis gets reinterpreted multiple ways...
Randall Sundrum Gravitons

- Masses correspond to zeros of Bessel function (ratio k/M_{Pl} changes cross-section and width of resonances)
- Search in all dilepton and diphoton channels

![Graph showing search bounds and cross-sections](image)

DØ Run II Preliminary

200 pb$^{-1}$

Davoudiasl et al., PRD63 075004, 2001

Gustaf Brooijmans Searches for New Physics Meeting of the DPF, UCR2004
Extra Gauge Bosons

- **CDF search in ditaus**

 - In some models, dominant coupling is to 3\(^{rd}\) generation
Note: Moller Scattering (E158) should be competitive
Distinguishing Gravitons from Z'

• Exploit the fact that the graviton is spin 2:

• But if parameters conspire, distinction may not be possible until LC (see for example Rizzo, hep-ph/0109179)

• If graviton, still need LC to distinguish between models using lineshape (Rizzo, hep-ph/0110202)

Allanach et al., JHEP 0009:019, 2000

1.5 TeV Graviton, 100 fb⁻¹ at LHC
Z' At Future Colliders

- Mass reach at LHC reaches 5 TeV at high luminosity if model parameters cooperate.
- If accessible at LC, use FB asymmetries to determine model.

Azuelos et al., hep-ph/0402037

BR reaches max at 4%
Split SUSY

- Recent model which doesn't attempt to address EWK fine-tuning problem (Arkani-Hamed & Dimopoulos, hep-th/0405159)
 - Fermion partners are ultraheavy (SUSY scale)
 - Gauginos are light (use chiral symmetry), so still have trileptons
 - Still have gauge coupling unification
 - Still have light Higgs (although mass can now go up to 150 GeV)
 - Get long-lived gluino
New Model...

... but long-lived gluino phenomenology gives signatures similar to

- GMSB (long lived strongly interacting NLSP)
- LED (monojet + missing ET due to escaping neutral gluino-hadrons instead of gravitons)
New Physics in Lepton Flavor Violation

- The generational structure of the SM fermions clearly suggests a link between the generations
 - LFV is therefore to be expected at some scale
 - And it's seen in the neutrino sector!

- Experimentally, LFV muon decays or conversions yield a very sensitive probe to high scale physics:

<table>
<thead>
<tr>
<th>Process</th>
<th>Leading experiment</th>
<th>BR reach</th>
<th>Future experiment</th>
<th>BR reach</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td>PRIME (2008)</td>
<td>$\sim 10^{-18}$ [7]</td>
</tr>
</tbody>
</table>

- No signal yet, but ratios can be used to distinguish between processes:

 Maybury & Murakami, hep-ph/0401170, also see talk by V. Cirigliano
Proton Decay

- Quark-lepton unification leads to proton decay
 - Non-observation already imposes stringent constraints on models
 - Current limit is lifetime $> 10^{31-33}$ years depending on decay mode
- Next generation detector should reach sensitivity $\sim 10^{35}$ years
- Expect $\sim 10^{36}$ years from GCU (see talk by D. Bourilkov)
Isolated Leptons at HERA

- Select W candidates in HERA data:
 - Isolated lepton
 - Missing Transverse Energy

- Total event count in reasonable agreement with SM, but if look at recoil p_T, apparent excess in H1 data

- ZEUS excess in tau channel only

<table>
<thead>
<tr>
<th></th>
<th>$P_T^X > 25$ GeV</th>
<th>$P_T^X > 40$ GeV</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>H1 Data</td>
<td>SM</td>
</tr>
<tr>
<td>electron</td>
<td>5</td>
<td>1.8 ± 0.3</td>
</tr>
<tr>
<td>muon</td>
<td>6</td>
<td>1.7 ± 0.3</td>
</tr>
<tr>
<td>combined</td>
<td>11</td>
<td>3.4 ± 0.6</td>
</tr>
<tr>
<td>electron</td>
<td>2</td>
<td>2.9$^{+0.6}_{-0.3}$</td>
</tr>
<tr>
<td>muon</td>
<td>5</td>
<td>2.8 ± 0.2</td>
</tr>
<tr>
<td>combined</td>
<td>7</td>
<td>5.7 ± 0.6</td>
</tr>
</tbody>
</table>

120 pb^{-1}
• Is this a signal? Are the two experiments compatible?

 - H1 electron+muon is a 2.8 sigma effect
 - Carli et al., MPLA 19, 1881, 2004 investigated compatibility under different scenarios: anomalous W, top or tau production

• HERA Run II, H1 result only:

 - 7 e events, 4.1 expected
 - 1 muon, 1 expected
 - 3 with $p_T > 25$ GeV, 1.5 exp
Magnetic Monopole(s)

- Existence of even a single magnetic monopole would explain electric charge quantization (Dirac, 1931), no prediction for mass

- In GUTs, magnetic monopoles exist, with mass $m > 10^{16}$ GeV

- Since magnetic charge is conserved, they are stable
Multilepton Events at HERA

- H1 observed 3 dielectron events in HERA-RUNI with $M_{ee} > 100$ GeV, no new events are observed. The expected number is 0.44
- ZEUS does not see any excess
Model-Independent Searches

- In channels where backgrounds are sufficiently small and/or understood, can pursue model-independent searches
 - Typically counting experiments above pre-fixed thresholds
- Of course, these a-priori analyses do not exploit all information (shapes of distributions,...)
The Fundamental Questions

• Understanding EWSB explains mass

• If there is Grand Unification, understanding its breaking will tell us about electric charge, color and spin
 – Both direct (low scale) and indirect (high scale)data critical

• Manifestations of extra dimensions would lead to better understanding of space-time

• Hopefully, information about GUT breaking or extra dimensions will help understand why there are 3 generations
Conclusions

• Nothing convincing yet
 – (And beware of effects at the edge of sensitivity)

• Things would need to conspire to avoid detection at the LHC, LC (with sufficient c.o.m energy) needed for measurements

• Only SUSY deals with the hierarchy problem, gauge coupling unification and EWSB, but it comes at (IMHO) a significant price

• Most of the really fundamental questions are going to remain unanswered for a while longer
No-Lose at the LHC?

- Suppose there is no Higgs, no resonances are seen, nothing
- Study $V_L V_L$ scattering to find what “saves” unitarity
- Start from effective chiral lagrangian

Heavy and Broad Scalar Resonance

Haywood et al., hep-ph/0003275