Results from HARP

Malcolm Ellis
On behalf of the HARP collaboration
DPF Meeting
Riverside, August 2004
The HAdRon Production Experiment

124 physicists

24 institutes
Physics Goals

• Input for precise calculation of atmospheric neutrino flux

• Input for prediction of neutrino fluxes for the MiniBooNE and K2K experiments

• Pion/kaon yield for the design of the proton driver of neutrino factories and SPL-based super-beams

• Input for Monte Carlo generators (GEANT4, e.g. for LHC, space applications)

Systematic study of HAdRon Production:
Beam energy: 2-15 GeV
Target: from hydrogen to lead.
Data Taking Summary

HARP took data at the CERN PS T9 beam-line in 2001-2002

Total: 420 M events, ~300 settings

SOLID:

<table>
<thead>
<tr>
<th></th>
<th>Be</th>
<th>C</th>
<th>Al</th>
<th>Cu</th>
<th>Sn</th>
<th>Ta</th>
<th>Pb</th>
<th>H₂O</th>
<th>Empty</th>
</tr>
</thead>
<tbody>
<tr>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>2%</td>
<td>10%</td>
<td>0%</td>
</tr>
<tr>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>5%</td>
<td>100%</td>
<td></td>
</tr>
<tr>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td>100%</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>+3,+5,+8,</th>
<th>+12,+15</th>
<th>-3,-5,-8,</th>
<th>-12,-15</th>
<th>+3,+5,+8,</th>
<th>+12,+15</th>
<th>-3,-5,-8,</th>
<th>-12,-15</th>
<th>+1.5</th>
<th>+1.5</th>
<th>+3,+5,+8,</th>
<th>+12,+15</th>
<th>-3,-5,-8,</th>
<th>-12,-15</th>
<th>+1.5,</th>
<th>+1.5,</th>
</tr>
</thead>
</table>

CRYOGENIC:

<table>
<thead>
<tr>
<th></th>
<th>H</th>
<th>D</th>
<th>N</th>
<th>O</th>
<th>Empty</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.8%</td>
<td>2.1%</td>
<td>5.5%</td>
<td>7.5%</td>
<td>0%</td>
<td></td>
</tr>
<tr>
<td>2.4%</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>+3,+5,+8,</th>
<th>+12,+15</th>
<th>-3,-5,-8,</th>
<th>-12,-15</th>
<th>+3,+5,+8,</th>
<th>+12,+15</th>
<th>-3,-5,-8,</th>
<th>-12,-15</th>
<th>+1.5</th>
<th>+1.5</th>
<th>+3,+5,+8,</th>
<th>+12,+15</th>
<th>-3,-5,-8,</th>
<th>-12,-15</th>
<th>+1.5,</th>
<th>+1.5,</th>
</tr>
</thead>
</table>

ν EXP:

K2K: Al

- 5%
- 100%
- Replica

MiniBoone: Be

- 5%
- 100%
- Replica

LSND: H₂O

- 10%
- 100%
- Replica

<table>
<thead>
<tr>
<th></th>
<th>K2K: Al</th>
<th>MiniBoone: Be</th>
<th>LSND: H₂O</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5%</td>
<td>5%</td>
<td>10%</td>
</tr>
<tr>
<td></td>
<td>50%</td>
<td>50%</td>
<td>100%</td>
</tr>
<tr>
<td></td>
<td>100%</td>
<td>100%</td>
<td>Replica</td>
</tr>
<tr>
<td></td>
<td>+12.9 GeV/c</td>
<td>+8.9 GeV/c</td>
<td>+1.5 GeV/c</td>
</tr>
</tbody>
</table>
TPC – Large Angle

• Full track reconstruction available

• Calibration campaign in 2003:
 – Calibration with sources (\(^{55}\)Fe, \(^{83}\)Kr)
 – Calibration with cosmic rays.

• Systematic study of corrections:
 – Basic calibrations revisited (time, charge, position)
 – Cross-talk correction
 – Distortion corrections
TPC Cross talk

Cross-talk model
- Capacitive couplings
- Preamplifier transfer functions

Cross-talk measurements
- Individual pulse injection in all pads
- 50% of pads affected by x-talk
- X-talk only relates to neighbouring pads

Full simulation exists

Oscilloscope DAQ

Residuals
- RMS ~ 3 mm

Introduced in MC

Capacitive couplings

Daughters
Momentum & dE/dx

Compare single arm with full track

\[\Delta p_t = \text{abs}(\rho_1 + \rho_2) \]

\[p_t = \sqrt{2(\rho_{\text{tot}})} \]

\[\rho \propto \text{charge } 1/p_t \]

\[A \times \left(\frac{1}{\beta^2} \right) \]

protons

Muons and pions

\[\Delta p_t/\rho_t = (0.56 \pm 0.04) \rho_t + (0.08 \pm 0.014) \]

\[\chi^2 = 0.62 \]
Elastic Scattering

- Red: using \(\frac{dE}{dx} \) for PID
- Blue: Simple selection
 - Only 1 pos. track in the TPC coming from the target
- Red: Additional cut on \(\frac{dE}{dx} \) in TPC (select proton)

missing mass for \(p \ p \rightarrow p \ p \) and \(\pi p \rightarrow \pi p \)
- Select \(p \) and \(\pi \) in the beam by ToF

\[p \ p \rightarrow p \ p \]
\[\pi \ p \rightarrow \pi \ p \]
Forward Analysis

- $p_\pi > 1\text{GeV/c}$
- $\theta_\pi < 250\text{ mrad}$
- Main tracking detector: NOMAD drift chambers
- Forward PID detectors
Beam Instrumentation

Beam composition and direction

MWPCs

Beam Cherenkov
- K-π separation at high energy

MiniBooNE target

Beam Tof
- k/π/p separation at low
- T0

T9 beam
CKOV-A
TOF-A
CKOV-B
TOF-B
MWPCs

21.4 m

12.9 GeV

3 GeV

K
π

π

k
p
d
NOMAD Drift Chambers

Cosmic rays

Alignment

Iter 1

Iter 2

Resolution

Iter 10

\[\sigma = 340 \mu m \]

Hit reconstruction efficiency

\~ 80 \%

\begin{itemize}
 \item 95 \% in NOMAD
 \item Harp: Not flammable gas (safety regulations)
\end{itemize}

Module eff

Lateral modules

Courtesy of NOMAD
$m^2 = p^2 \cdot \left(\left(\frac{t_w - t_0}{L} \right)^2 - 1 \right)$

- Tof ~160 ps
- $7\sigma \pi/p$ @ 3 GeV
- Beam ~70 ps
π/p using Cherenkov

$\pi/p \ p > 3$ GeV

$\pi/k \ 3 < P < 9$ GeV

$N_{phe} \propto N_0 \left(1 - \frac{1}{n^2} \left(1 + \left(m/p\right)^2\right)\right)$
e/π using calorimeters

- “Spaghetti” type
- Courtesy of the CHORUS experiment
- 2 planes (EM1, EM2)

Resolution

\[\frac{\sigma_E}{E} = \frac{23\%}{\sqrt{E(\text{GeV})}} \]

\[\text{observed resolution} \]

\[\text{Energy, EM1/EM2} \]

3 GeV

electrons

pions
NDC Tracking Efficiency

- Multi-track events (hit efficiency, hit density, pattern recognition) → tracks type 1 (3-d segment in NDC1) “migrate” to type 2 tracks (2-d segment in NDC1) and type 3 tracks (hits in NDC1)

- Tracks type 2 & 3 + vertex constrain → measure \((p, \theta, q)\).
 - Size of migration → hadronic model dependent
 - Total efficiency → hadronic model independent
Cross section

\[\sigma_{ij}^\pi = F_{\text{norm}} \cdot M_{ij}^{kl} \cdot \frac{1}{\epsilon^{\pi}_{kl}} \cdot \left(N_{kl}^\pi - N_{kl}^{bkg} \right) \]

\[\sigma_i^\pi = \frac{1}{\epsilon_i^{\text{acc}}} \cdot \frac{1}{\epsilon_i^{\text{track}}} \sum_{t=1}^{3} \left[M_{ij}^{(t)} \frac{1}{\epsilon_j^{(t)-\pi}} \eta_j^{(t)-\pi} \cdot N_j^{(t)-\pi} \right] \]
Cross section revisited

\[\sigma_{ij}^\pi = \frac{1}{\varepsilon_{acc}^i} \frac{1}{\varepsilon_{track}^i} \sum_{t=1}^3 \left[M_{ij}^{(t)} \frac{1}{\varepsilon_{j}^{(t)-\pi}} \eta_j^{(t)-\pi} \cdot N_j^{(t)-\pi} \right] \]

- track types
- Tracking efficiency
- Pion purity
- Measured pion yield
- Runs on bins of \((p, \theta)\)
- Acceptance
- Migration matrix
- Pion efficiency
Tracking efficiency

\[\varepsilon_{i, \text{track}} = \frac{N_i^p}{N_i^{\text{acc}}} = \frac{N_i^{\text{down}}}{N_i^{\text{acc}}} \cdot \frac{N_i^p}{N_i^{\text{down}}} = \varepsilon_{i, \text{down}} \cdot \varepsilon_{i, \text{up-down}} \]
Module acceptance and efficiency

Acceptance of modules 3, 4 & 5 normalized to acceptance in module 2 as a function of p and θ_x (MC)

Tracking efficiency of modules downstream the dipole as a function of x_2 and θ_{x2} (DATA)
Downstream tracking efficiency

\[E_{\text{down}} \sim \text{cte}(p, \theta) = 98\% \]
Total tracking efficiency as a function of p (left) and θ_x (right) computed using MC properly scaled by data.
PID probabilities

\[P(p, \lambda | \pi) \quad P(p, \overline{N}_{phe} | \pi) \quad P(p, E_1, E_2 | \pi) \]

tof

\(\lambda = m^2/p^2 \)

cherenkov

\(N_{phe} \)

ecal

\(E_1 \) vs \(E_2 \)

electrons

pions
Pion correction factor

- The yield of each track type must be corrected by pion efficiency & purity
- Compute using beam particles (clean particle selection from beam detectors)

\[
\varepsilon_i^{\pi-i} = \frac{N_i^{\pi-\text{true-obs}}}{N_i^{\pi-\text{true}}} = \frac{\text{tracked true pions identified as such}}{\text{tracked true pions}}
\]

\[
\eta_i^{\pi-i} = \frac{N_i^{\pi-\text{true-obs}}}{N_i^{\pi-\text{obs}}} = \frac{\text{tracked true pions identified as such}}{\text{tracked particles identified as pions}}
\]
K2K target – Pion yield

- Raw
- Efficiency
- PID
- Acceptance
Summary and Outlook

- HARP first results using the K2K replica target are now available.
- Measurement needed to improve the calculation of the far/near ratio in K2K will come soon.
- A similar analysis is proceeding on the MiniBooNE replica target (see talk by L.Coney).
- Further measurements of interest to the neutrino physics community will be provided by HARP in the near future...